Molecular chain stretch is a multiaxial failure criterion for conventional and highly crosslinked UHMWPE.

نویسندگان

  • J S Bergström
  • C M Rimnac
  • S M Kurtz
چکیده

The development of accurate theoretical failure, fatigue, and wear models for ultra-high molecular weight polyethylene (UHMWPE) is an important step towards better understanding the micromechanisms of the surface damage that occur in load bearing orthopaedic components and improving the lifetime of joint arthoplasties. Previous attempts to analytically predict the clinically observed damage, wear, and fatigue failure modes have met with limited success due to the complicated interaction between microstructural deformations and continuum level stresses. In this work, we examined monotonic uniaxial and multiaxial loading to failure of UHMWPE using eight failure criteria (maximum principal stress, Mises stress, Tresca stress, hydrostatic stress, Coulomb stress, maximum principal strain, Mises strain, and chain stretch). The quality of the predictions of the different models was assessed by comparing uniaxial tension and small punch test data at different rates with the failure model predictions. The experimental data were obtained for two conventional (unirradiated and gamma radiation sterilized in nitrogen) and two highly crosslinked (150kGy, remelted and annealed) UHMWPE materials. Of the different failures models examined, the chain stretch failure model was found to capture uniaxial and multiaxial failure data most accurately for all of the UHMWPE materials. In addition, the chain stretch failure criterion can readily be calculated for contemporary UHMWPE materials based on available uniaxial tension data. These results lay the foundation for future developments of damage and wear models capable of predicting multiaxial failure under cyclic loading conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An augmented hybrid constitutive model for simulation of unloading and cyclic loading behavior of conventional and highly crosslinked UHMWPE.

Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in total joint replacements. Wear, fatigue, and fracture have limited the longevity of UHMWPE components. For this reason, significant effort has been directed towards understanding the failure and wear mechanisms of UHMWPE, both at a micro-scale and a macro-scale, within the context of joint replacements. We have previously ...

متن کامل

Notch Effects Under Physiologically-Relevant Conditions of Conventional and Highly Crosslinked UHMWPEs

Introduction: Ultra high molecular weight polyethylene (UHMWPE) components used in total joint replacements have rims and fillets that act as design stress risers; thus, it is of interest to determine the behavior UHMWPE under multiaxial loading conditions. Currently, there are a number of conventional and crosslinked UHMWPE formulations in clinical use in total hip and total knee replacement c...

متن کامل

Advances in tribological testing of artificial joint biomaterials using multidirectional pin-on-disk testers.

The introduction of numerous formulations of Ultra-high molecular weight polyethylene (UHMWPE), which is widely used as a bearing material in orthopedic implants, necessitated screening of bearing couples to identify promising iterations for expensive joint simulations. Pin-on-disk (POD) testers capable of multidirectional sliding can correctly rank formulations of UHMWPE with respect to their ...

متن کامل

Wear of Crosslinked Uhmwpe in a Hip Joint Simulator

Crosslinking has been extensively introduced to reduce the wear of UHMWPE. In this study the wear rates and wear surfaces of UHMWPE with different levels of crosslinking were compared in a hip joint simulator. The UHMWPE was either non-irradiated, gamma irradiated in air (2.5MRad), or highly crosslinked (7.5 and 10MRad). The intentionally crosslinked materials showed a significantly lower volum...

متن کامل

Wear Reduction in Total Ankle Arthroplasty Using Highly Crosslinked UHMWPE

Introduction: Bearing couples within total ankle arthroplasty (TAA) typically utilize cobalt chromium alloys articulating on ultrahigh molecular weight polyethylene (UHMWPE). Articulation of these surfaces during in vivo loading can generate UHMWPE wear particles, which may then result in osteolysis and component loosening [1]. Osteolysis has been observed following TAA in 15-22% of patient pop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2005